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Abstract

Any attempt to introduce automation into the moni-
toring of’ complex physical systems must start from
arobust anomaly detection capability, This task
is far from straightforward, for a single definition
of what constitutes an anomaly is difficult to come
by. In addition, to make the monitoring process
cfficient, and to avoid the potential for information
overload on human operators, attention focusing
must also be addressed. When an anomaly occurs,
more often than not several sensors arc affected, and
the partially redundant information they provide can
bc confusing, particularly in a crisis situation where
aresponse is needed quickly.

Previous results on extending traditional anomaly
detection techniques arc summarized. The focus of
this paper is a ncw technique for attention focusing.
The technique involves reasoning about the distance
between two frequency distributions, and is used
to detect both anomalous system parameters and
“broken” causal dependencics. These two forms of
information together isolate the locus of anomalous
behavior in the system being monitored,

1 Introduction

Mission Operations personnel at NASA have the task of de-
termining, from moment to moment, whether a space plat-
form is exhibiting behavior which is in any way anomalous,
which could disrupt the operation of the platform, and in the
worst case, could represent aloss of ability to achieve mission
godls. A traditional technigue for assisting mission operators
In space platform health analysis is the establishment of alarm
thresholds for sensors, typically indexed by opcrating mode,
which summarize which ranges of sensor values imply the
existence of anomalies. Another established technique for
anomaly detection is the comparison of predicted values from
a simulation to actual values received in tclemetry. However,
experienced mission operators reason about more than alarm
threshold crossings and discrepancies between predicted and
actual to detect anomalies: they may ask whether a sensor is
behaving differently than it hasin the past, or whether acur-
rent behavior may lead to—the particular bane of operators—a
rapidly developing alarm sequence.

Our approach to introducing automation into real-time sys-
tems monitoring is based on two observations: 1) mission
operators employ multiple methods for recognizing anoma-
lies, and 2) mission operators do not and should not in-
terpret all sensor data al 1 of thetime.  Wc seek an ap-
proach for determining from moment to moment which of
the available sensor data is most informative about the pres-
ence Of anomalies occurring within a system.  Weterm
this process sensor selection and wc have implemented a
p]rototype selective monitoring system called SELMON [6;
7

The SELMON system has its origins in a sensor planning
system called GripE [5] which planned information gathering
activities to verify the execution of robot task plans. other
model-based monitoring systems include Dvorak’s Mimic,
which performs robust discrepancy detection for continuous
dynamic systems [8; 9], and DeCoste’s DAT™I , which infers
systiem states from incomplete sensor data [41. The SkLMON
work complements other work within NASA on empirical
and model-based methods for fault diagnosis of acrospace
platforms [1; 10; 11; 131.

2 Background: The SELMON Approach

How does a human operator or a machine observing a com-
plex physical system decide when something is going wrong?
Abnormal behavior is always defined as some kind of depar-
ture from normal behavior. Unfortunately, there appears to be
no single, crisp definition of “normal” behavior. In the tradi-
tional monitoring technique of limit sensing, normal behavior
is predefined by nominal value ranges for sensors. A funda-
mental limitation of this approach is the lack of sensitivity
to context. In the other traditional monitoring technique of
discrepancy detection, normal behavior is obtained by simu-
lating a model of the system being monitored. This approach,
while avoiding the insensitivity to context of the limit sens-
ing approach, has its own limitations. The approach is only
as good as the systcm model, In addition, normal system
behavior typically changes with time, and the model must
continue to evolve, Given these limitations, it can be difficult
to distinguish genuine anomalies from errors in the model.
Noting the limitations of the existing monitoring tech-
niques, Wc have developed an approach to monitoring which
is designed to make the anomaly detection process more ro-
bust, to reduce the number of undetected anomalies (false
negatives), Towards this end, wc introduce multiple anomaly



models, each employing a different notion of “norma” be-
havior.

2.1 Empirical Anomaly Detection Methods

In this section, wc briefly describe the empirical methods
that wc usc to determine, from alocal viewpoint, when a
sensor is reporting anomalous behavior. These measures usc
knowledge about each individual sensor, without knowledge
of any relations among sensors.

Surprise

An appealing way to assess whether current behavior is
anomalous or not is via comparison to past behavior, This
isthe essence of the surprise measure. It is designed to
highlights sensor which behaves other than it has historicaly,
Specifically, surprise uscs the historical frequency distribution
for the sensor in two ways: To determine the likelihood of
the given current value of the sensor (unusualness), and to
examine the relative likelihoods of different values of the
sensor (informativeness). It is those sensors which display
unlikel y val ucs when other values of the sensor arc more
likely which get a high surprise score. Surprise is not high
if the only reason a sensor’s value is unlikely is that there arc
many possible values for the sensor, al equally unlikely.

Alarm

Alarm thresholds for sensors, indexed by operating mode,
typically arc established through an off-l inc analysis of system
design. The notion of alarmin Sk1.MON extends the usual onc
hit of information (the sensor isin alarm or it is not), and also
reports how much of the alarm range has been traversed. Thus
a sensor which has gone deep into alarm gets a higher score
than onc which has just crossed over the alarm threshold.

Alarm Anticipation

The alarm anticipation measure in SELMoN performs a
simple form of trend analysis to decide whether or not a sensor
isexpected to bec in @darm in the future. A straightforward
curvefit is used to project when the sensor will next cross an
alarm threshold, in either dircction. A high score mans the
sensor will soon enter alarm or will remain there. A low score
means the sensor will remain in the nominal range or emerge
from aarm soon.

Vaue Change

A changein the value of a sensor may be indicative of an
anomaly. In order to better assess such an event, the value
change measure in SELMON compares a given value change
10 historical value changes seen on that sensor. The score
reported is based on the proportion of previous value changes
whit}] were less than the given value change. It is maximum
when the given value change is the greatest value change seen
1o date on that sensor. It is minimum when no value change
has occurred in that sensor.

2.2 Modd-l)ased Anomaly Detection Methods

Although many anomalies can be detected by applying
anomaly models to the behavior reported at individual sensors,
robust monitoring aso requires reasoning about interactions
occurring in a system and detecting anomalies in behavior
reported by several sensors.

Deviation

The deviation measure is our extension of the traditional
mcthod of discrepancy detection. Asin discrepancy detec-
tion, comparisons arc made between predicted and actual sen-
sor values, and diffcrences arc interpreted to be indications of
anomalies. This raw discrepancy is cntered into a normaliza-
lion process identical to that used for the value change score,
and it is this representation Of relative discrepancy which is
reported. The deviation score for a sensor is minimum if there
is no discrepancy and maximum if the discrepancy between
predicted and actual isthe greatest seen to date on that sensor,

Deviation only requires that asimulation be available in any
form for generating sensor value predictions. However, the
remaining sensitivity and cascading alarms measures require
the ahility to smulate and reason with a causal model of the
system being monitored.

Sensitivity and Cascading Alarms

Sensitivity measures the potential for alarge global per-
turbation to develop from current state. Cascading alarms
measures the potential for an alarm sequence to develop from
current state. Both of these anomaly measures usc an event-
driven causal simulator [2; 12] to gencrate predictions about
future states of the system, given current state. Current state
is taken to be defined by both the current values of system
parameters (not all of which maybe sensed) and the pending
events aready resident on the simulator agenda. The mea-
sures assign scores to individual sensors according to how the
system parameter corresponding to a sensor participates in,
or influences, the predicted global behavior. A sensor will
have its highest sensitivity score when behavior originating at
that sensor causes al sensors causally downstream to exhibit
their maximum value change to date. A sensor will have its
highest cascading alarms score when behavior originating at
that sensor causes all sensors causally downstream to go into
an darm date.

2.3 Previous Results

In order to assess whether SELMON increased the robustness
of the anomaly detection process, wc performed the following
experiment: We compared SELMON performance to the per-
formance of the traditional limit sensing technique in selecting
critical sensor subsets specified by a Space Station Environ-
mental Control and Life Support System (ECLSS) domain
expert, sensors seen by that expert as useful in understanding
episodes of anomalous behavior in actual historical data from
ECLSS testbed operations.

The experiment asked the following specific question: How
often did StIMON place a “critical” sensor in the top half of
its sensor ordering based on the anomal y detection measures?

The performance of arandom sensor selection algorithm
would be expected to be about 50%; any particular sensor
would appear in the top half of the sensor ordering about half
the time. Limit sensing detected the anomalies 76.3% of the
time. SELMON detected the anomalies 95. 1% of the time.

These results show SeLMoN performing considerably bet-
ter than the traditional practice of limit sensing. They lend
credibility to our premise that the most effective monitoring
system iS onc which incorporates several models of anoma-
lous behavior. Our aim is to offer a more complete, robust
set of techniques for anomaly detection to make human oper-



ators more cffective, or 1o provide the basis for an automated
monitoring capability.

The following is a specific example of the value added
of SELMON. During an episode in which the ECL.SS pre-
heater failed, system pressure (which normally oscillates
within a known range) became stable. This “abnormally
normal” behavior is not detected by traditional monitor-
ing methods because the system pressure remains firmly
in the nominal range where limit sensing fails to trig-
ger. Furthermore, the fluctuating behavior of the sensor
is not modeled; the predicted value is an averaged stable
value which fails to trigger discrepancy detection. Sce [7;
6] for more details ‘ on these previous results in evaluating the
SELMON approach.

3 Attention Focusing

A robust anomaly detection capability provides the core for
monitoring. but only when this capability is combined with
attention focusing dots monitoring become both robust and
efficient. Otherwise, the potential problems of information
overload and too many false positives may defeat the utility
of the monitoring system.

The attention focusing technique developed here uscs two
sources of information: historical data describing nominal
system behavior, and causal information describing which
pairs of sensors arc constrained to be correlated, duc to the
presence of adcpendency. Theintuition is that the origin and
extent of an anomaly can be determined if the misbehaving
system parameters and the mishehaving causal dependencics
can be determined. Such information also supports reasoning
to distinguish whether sensors, system parameters or mech -
anisms arc misbehaving duc to the fact that the signature of
“broken” nodes and arcs in the causal graph arc distinguish-
able. Sce Figure 1.

For example, the expected signature of an anomalous scn-
sor includes the node of the sensor itself and the immediately
adjacent arcs corresponding to the causal dependencics that
the sensor participates in directly. The intuition is that the ac-
tual system is behaving normally so the locus of “brokenness’
is isolated to the sensor and the set of adjacent causal depen-
dencies which attempt to reconcile the bogus value reported
by the sensor,

The expected signature of an anomal ous system parameter
also includes nodes and arcs which arc downstream in the
causal graph from the node corresponding to the system pa-
rameter, The intuition here is that the misbehavior, being in
the actua system, will propagate.

The expected signature of an anomalous mechanism aso
includes arcs and nodes causally downstream from the arc
corresponding to the mechanism. Once again, the intuition is
that the misbehavior isin the system itself, and it will prop-
agate. The way to distinguish this case from the anomalous
system parameter Case iS to examine all input arcs (assuming
there arc more than one) to the most causally prior node in the
“broken” subgraph.

3.1 Two Additional Measures

While SELMON runs, it computes incremental frequency dis-
tributions for all sensors being monitored These frequency
distributions can be saved as a method for capturing behav-
ior from any episode of interest. Of particular interest arc

.
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Figure 1: Anomalous System Parameters, Sensors and Mech-
anisms.

historical distributions which correspond to nominal system
behavior.

Toidentify an anomalous sensor, wc apply a distance mea-
sure, defined below, to the frequency distribution which rep-
resents recent behavior to the historical frequency distribution
representing nominal behavior. Wc call the measure simply
distance. To identify a “broken” causal dependency, wc first
apply the same distance measure to the historical frequency
distributions for the cause sensor and the effect sensor. This
reference distance is aweak representation of the correlation
that exists between the values of the two sensors duc to the
causa dependency. This reference distance is then compared
to the distance between the frequency distributions based on
recent data of the same cause sensor and effect sensor, The dif-
ference between the reference distance and the recent distance
is the measure of the “brokenness’ of the causal dependency.
Woc call this measure causal distance.

3.2 Desired Properties of the Distance Measure
Define a distribution I as the vector d; such that

Vi,0<d; <1

and

n-1
Z di =1
1=0
For a sensor S, wc assume that the range of vaues for the
sensor has been partitioned into n contiguous subranges which
exhaust this range. Wc construct a frequency distribution as a



vector Ds of length n, where the value of disthe frequency
with which S has displayed avalue in the ith subrange.

If our aim was only to compare different frequency distri-
butions of the same sensor, wc could usc a distance measure
which required the number of partitions, or binsin the two
distributions to be equal, and the range of values covered by
the distributions to be the same. However, since our aim is
to be able to compare the frequency distributions of different
sensors, these conditions must be relaxed.

Before defining the other desired properties of the distance
measure, wc define two special t ypcs of frequency distri -
bution, Let I be the random, or flat distribution where
Vi, di =1 Let Sbe the set of “spike” distributions where
d; —-landVJ;M dj =0.

Wc seek a distance measure for frequency distributions with
the following properties:

Distance

VYD Dy, A(Dy, D) >0

This properly merely defincs the measure as a distance
measure.

Identity
VD,A(D, D)=

Symmetry

VYD D, A(Dy, Dy)=A(Dr, Dy)

Woc do not wish to emphasize whether wc arc comparing
recent data to historical data or vice versa, or cause data to
cffect data or vice versa

Spike Distinctness
Vi j, A(S:, S;) >0
Wcwish the set of Stobe distinguishable,

Spike Orderin

Vi, A(Sn i+1) < A(S.,S;+2)

The distance measure should preserve the fact that there is
an ordering on the bins.

Spike Equidistance

Vi # 4, A(S;, Sit1) = A(S;, Sj41)

There should be no difference |n weighting of the spike
distributions.

SpikelFlat Equidistance

Vit hAS, )= A(S;, I)

The diffcrence between any spike distribution and the flat
distribution is to be the same.

ExtremaN Dy DYi, A(Dy, D2) < A(Si, F)

Any spike distribution and the flat distribution arc to be
considered the most different. All other distributions fall in
between,

3.3 The Distance Measure

The distance measure is computed by projecting the two dis-
tributions into the two-dimensional space [, s} in polar coor-
dinates and taking the cuclidian distance between the projec-
tions.

Define the “flatness’ component f( ) of adistribution as
follows:

}:lll—dl

¢="/3

1=1 S0

Figure 2: The function A(D,, 12)-

Thisis simply the sum of the bin-by-bin diffcrences be-
wween the given distribution and . Notethat O < f(12) < 1.
Also, f(Si)—= 1 as n — oo.

Define the “spikeness” component s(D) of a distribution
as:

n-1

1
Z:(f)n—— ]di

1 =0

This is simply the centroid value calculation for the distri-
bution. The weighting factor@ will be explained in a moment.
Once again, O< (D) < 1.

Now take[f, s) to be polar coordinates [r, t?]. This maps
Fto the origin and the Sto points along an arc on the unit
circle. Sce Figure 2.

By inspection, the Spike Distinctness, Spike Ordering and
Spike/FFlat Equidistance properties are satisfied, The Spike
Equidistance properly is satisfied because there is no un-
equal weighting applied in the ccntroid calculation. The Dis-
tance, Identity and Symmetry properties follow from taking
the cuclidian distance between the projections of the distri-
butions. The Extrema properly is satisfied by taking ¢ =3
This choice of ¢ guarantees that A(Sp, Sn-1) = A(F, SO) =
A(F, 5, _1) = 1and all other distances in the region which is
the range of A arc by inspection < 1.

Insensitivity to the number of bins in the two distributions
and the range of values encoded in the distributions is provided
by the [, s? projection function, which abstracts away from
these properties of the distributions.

Wc may note in passing that the distance measure described
here may be easily modified to apply to continuous distribu-
tions, when theoretical models of tbc behavior of a system
arc available, The centroid calculation of thes component is
easily accomplished, and the / component involves merely
the integral of adifference, which may be accomplished nu-
merically if necessary.
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Figure 3: The Forward Reactive Control System (FRCS) of
the Space Shuittle.

3.4 Results

In this section, wc report on the results of applying the dis-
tribution distance measure to the task of focusing attention
in monitoring, The distribution distance measure is used to
identi fy misbehaving nodes (distance) and arcs (causal dis-
tance) in the causal graph of the system being monitored, or
cquivalentl y, detect and isolate the extent of anomalies in the
systcm being monitored.

3,4.1 A Space Shuttle Propulsion Subsystem

Figure. 3 and Figure 4, show respectively, a schematic dia
gram and a causa graph for a portion of the Forward Reactive
Control Systcm (FRCS) of the Space, Shuttle. A full causal
graph for the Reactive Control System, comprising the For-
ward, 1 eft and Right RCS, was developed with the domain
expert,

3.4.2 Attention Focusing Examples

SELMON was run on seven episodes describing nominal
behavior of the FRCS. The frequency distributions collected
during these runs were merged. Reference distances were
computed for sensors participating in causal dependencies.

SELMON was then run on 13 different fault episodes, rep-
resenting faults such as leaks, sensor failures and regulator
failures. Two of these episodes will be examined here; re-
sults were similar for all episodes. In each fault episode,
and for each sensor, the distribution distance measure was
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Figure 4: Causal Graph for the FRCS.

applied to the incremental frequency distribution collected
during the episode and the historical frequency distribution
from the merged nominal episodes. These distances were a
measure of the “brokenness’ of nodes in the causal graph; i.e.,
instantiations of the distance measure.

Ncw distances were computed between the distributions
corresponding to sensors participating in causal dependencies.
The differences between the ncw distances and the reference
distances for the dependencies were a measure of the “bro-
kenness” of arcs in the causal graph; i.e., instantiation of the
causal distance measure.

The first episode involves a leak affecting the first and
second manifolds (jets) on the oxidizer side of the FRCS.
The pressures at these two manifolds drop to vapor pressure.
The dcpendency between these pressures and the pressure in
the propellant tank is severed because the valve between the
propellant tank and the manifolds is closed. Thus there arc
two anomalous system parameters (the manifold pressures)
and two anomalous mechanisms (the agreement between the
propellant and manifold pressures when the valve is open).

Thedistance and causal distance measures computed for
nodes and arcs in the FRCS causal graph reflect this faulty
behavior. Sce Figure 5. (To visualize how the distribution
distance measure circumscribes the extent of anomalies, the
coloring of nodes and the width of arcsin the figure are
correlated with the magnitudes of the associated distance and
causal distance scores).

The second episode involves an overpressurization of the
propellant tank duc to a regulator failure. Onboard software
automaticall y attempts to closc the valves which isolate the
helium tank from the propellant tank, Onc of the valves sticks
and remains open,

The distance and causal distance measures isolate both
the misbehaving system parameters (propellant pressure and
valve status indicators) and the misbehaving mechanisms (be-




Figure 5: A leak fault.

tween the helium and propellant tank pressure and between
the propellant tank pressure and the valve status indicators).
Overpressurization oOf the propellant tank also alters the usual
relation between propellant tank pressure and manifold pres-
sures. See Figure 6.

4 Discussion

The distance and causal distance measures bawd on the dis-
tribution distance measure combine two concepts. 1) empir-
ical data alone can bc an effective model of behavior, and 2)
the existence of acausa dependency between tWo parame-
ters implies that their values arc somehow correlated. The
causal distance measure constructs a model of the correla-
tion between two causal] y related parameters, capturing the
general notion of constraint in an admittedly abstract manner.
Nonctheless, these models of constraint arising from causal-
ity provide surprising discriminatory power for determining
which causal dependencics (and corresponding system mech-
anisms) arc misbehaving. (In the distance measure for detect-
ing misbchaving system parameters, wc arc simply using the
degenerate constraint of expected equaity between historical
and recent behavior.)

4.1 Monitoring Architecture

The attention focusing capability provided by thedistance and
causal distance measures can be combined with the multiple-
vicwpoint anomaly detection capability already developed in
SELMON to construct a general monitoring architecture,

The multiple anomaly measures (including the distance and
causal distance measures, which arc anomaly detection mea-
sures in their own right) provide continuous anomaly detection
capability. All of these measures arc normalized to the range
[0,1] so their sensitivity, individually or collectively, can bc
fine-tuned for the behavior of particular monitored systems.
Whenever adetected anomaly is announced, the extent of the
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Figure 6: A pressure regulator fault,

anomaly is isolated by applying the results of the distance and
causal distance measures to the causal graph of the system.
If SELMON is supporting a human operator, the operator’s at-
tention is focused on the locus of the anomaly, rather than the
potentially long and confusing list of the individual manifes-
tations of the anomaly.

Once an anomaly is detected and circumscribed, the opera-
tor can once again usc the set of anomal y detection measures to
gather supplementary, multiple-viewpoint information about
the detected anomaly a multiple probe points.

4.2 Anomaly Characterization

Most model-based reasoning work has focused on diagnosis,
treating monitoring as a “front-end”, with discrepancy detec-
tion usually chosen as the monitoring technique. The SELMON
work suggests modifications to this view.

Monitoring is a complex, subtle and important task in its
own right. The most sophisticated diagnosis engine is of
limited utility if it is unreliably invoked by a weak anomaly
detection module.

The monitoring/diagnosis distinction actually defines two
poles of a continuum [3]. At onc end is anomaly detec-
tion. The goal of anomaly detection is simply to determine
if an anomaly exists. General models of what congtitutes an
anomaly arc utilized, with limited reference to explicit behav-
ior models, Reasoning is local rather than global.

Next in the continuum is anomaly characterization. The
god hereisto describe the extent of anomalous behavior.
Again, the usc of explicit behavior models is limited, but
reasoning now encompasses a global view of the system.
The empiricad anomaly detection and attention focusing ca-
pabilitics of SELMON correspond to anomaly detection and
anomaly characterization as defined here. The model-based
anomaly detection capabilities of SELMON also arc examples
of anomal y characterization,

Next comes fault isolation. Reasoning now is refined from



.anomaly extent to anomaly source. Explicit beli\aior models

may be used, but not explicit fault models.

Finally comes full-fledged fault diagnosis, which includes
an explanat ion of how the proposed fault produced the anoma-
lous behavior. Explicit fault models may be referenced to
veri fy h ypotheses,

In actual real-time monitoring practice, operators perform
anomaly detection and characterization routinely, and fault
isolation when enough information is available 10 support
their reasoning. Fault diagnosisis typically done off-line.

5 Future Work

Several issues need 1o be examined to continue the cvaluation
of the atlention focusing technique based on the distribution
distance measure and its utility in monitoring.

Wc need to understand the sensitivity of the technique to
how sensor value ranges arc partitioned. Clearly the discrim-
inatory power of the distribution distance measure istclated
to the resolution provided by the number of bins and the bin
boundaries. The results reported here arc encouraging for the
number of FRCS sensor bins were in many cases as low as
three and in no cases more than cight.

Woc aso need to understand the suitability of the technique
for systems which have many modes or configurations. Wc
would expect that the discriminatory power of the technique
would be compromised if the distributions describing behav-
iors from different modes were merged. Thus the technique
requires that historical data representing nomina behavior is
separable for each mode. If there arc many modes, at the
very least there is a data management task, A capability for
tracking mode transitions is aso required. An unsupervised
learning system which can enumerate system modes from his-
torical data and enable automated classification would solve
this problcm nicel y.

The discri minatory power of the causal distance measure
might be enhanced by retaining the flatness/spikencss distine-
tion. For many linear functions, different input distributions
may map to value-shifted but similarly shaped output distri-
butions. In other words, the spikencss component may vary
while the flatncss component may be relatively invariant, It
may be possible to distinguish the case where misbehavior
is the result of bogus vaues being propagated through still
correctly functioning mechanisms.

It should be possible to describe the temporal (along with
the causal/spatial) extent of anomalies by incrementally com-
paring recent sensor frequency distributions calculated from
a “moving window" of constant length with static reference
frequency distributions.

6 Towards Applications

The approach described in this paper has usability advantages
over other forms of model-based reasoning. The overhead in-
volved in constructing the causal and behavioral model of the
system is minimal. The behavioral model is derived directly
from actual data; no offline modeling is required. The causal
model is of the simplest form, describing only the existence
of dependencies. For the Shuttle RCS, a 198-node, 196-arc
causal graph was constructed in a single onc and onc half hour
session between the author and the domain expert.

SELMON is being applied at the NASA Johnson Space Cen-
ter as a monitoring tool for Space Shuttle Operations and
Space Station Operations. Current application efforts include
the onc for the F repulsion (PROP) flight control discipline
reported on here, and onc for the Thermal (EECOM) flight
control discipline. EECOM wishes in particular to be able
to know and reason about how actual orbiter thermal per-
formance differs from predictions gencrated by an available
mathematical model of orbiter thermal performance. Anop-
erational SELMON prototype, available starting with the re-
cent Hubble Repair mission is available for evauation by all
flight control disciplines, only requiring that alist of sensors
“owned” by that discipline be provided.

At the Jet Propulsion Laboratory, wc arc looking at the
problem of onboard downlink determination for the Pluto Fast
Flyby project, now in its early planning phase. The spacecraft
will have limited communications bandwidth and it will not be
possible to transmit all onboard-collected sensor data. Only
eight hours of coverage from the Deep Space Network will be
available pcr week, The challenge is to devise a method for
constructing a suitable summary of a week’s worth of sensor
data guaranteed to report on any anomalies which occurred.
The anomaly detection and attention focusing capabilities of
SELMON maybe well-matched to this task.

7 Summary

Wc have described the properties and performance of a dis-
tance measure used to identify misbchavior at sensor loca-
tions and across mechanisms in a system being monitored.
The technique enables the locus of an anomaly to be deter-
mined. This attention focusing capability is combined with a
previously reported anomaly detection capability in a robust,
cfficient and informative monitoring system called SELMON.
SEIMONis being applied in mission operations at NASA,
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